Army and Air Force Are Teaming up to Build New Hypersonic Weapons
Many Hypersonic weapons are engineered as “kinetic energy” strike weapons, meaning they will not use explosives but rather rely upon sheer speed and the force of impact to destroy targets, developers explain. A super high-speed drone or ISR platform would better enable air vehicles to rapidly enter and exit enemy territory and send back relevant imagery without being detected by enemy radar or shot down.
Interestingly, air flow properties of hypersonic weapons can also provide a window through which to attack or destroy an enemy hypersonic weapon; hypersonic flight is not only complex but also extremely fragile, Ret. Lt. Gen. Trey Obering, Executive Vice President and Directed Energy Lead, Booz Allen Hamilton and previously served as the Director of the Pentagon’s Missile Defense Agency, told Warrior in an interview.
Therefore, hypersonic weapons could also potentially be stopped by, as Obering put it, causing a “disruption in the air flow.” Changes in aerodynamics can break up forces such as lift, thrust and drag, Obering said.
“These forces are all in balance. When you are going fast there is a small margin in those forces. A disruption can cause the entire vehicle to break up,” he explained.
Essentially, the idea is not to destroy the hypersonic weapon with an explosion, but rather cause an “instantaneous” angle change in the complex, interwoven mixture of air-flow variables. This, quite significantly, can cause an entire vehicle to break apart. A number of things could cause this, such as a laser, rupture of a booster, missile explosion in the vicinity of the weapon in-flight or some other kind of disruption. –
“Hypersonics have control surfaces that can maneuver like an aircraft. You would take advantage of the vehicle’s speed and cause a change in vehicle direction,” Obering said.
Booz Allen Hamilton is among several defense industry giants now working on hypersonic weapons technology, including the exploration of emerging methods to defend them.
How can carrier strike groups project power within striking range of enemy targets? How can mechanized armored columns maneuver without being badly crippled by hypersonic attack? How can the most advanced fighter jets maneuver to avoid impact if there simply is no time? Perhaps satellites, ICBMs and defensive weapons such as Ground-Based Interceptors could also be vulnerable? The variables through which hypersonics promise to alter warfare are seemingly limitless. The danger is extremely serious.
“In many ways hypersonics represents the last frontier in aeronautics,” the NASA, AFRL, Case Western Univ. paper states.
Overall, the Pentagon and military services have been massively fast-tracking hypersonic weapons development, given the far-reaching warfare implications associated with firing weapons able to travel at five-times the speed of sound; numerous programs have been underway, and the most current estimation is that an initial set of hypersonic weapons will be operational by the early 2020s. Earlier this year, the Air Force conducted its first prototype hypersonic missile flight test; the service launched a sensor-only prototype of the AGM-183A Air Launched Rapid Response Weapon from a B-52.
The advantages of these weapons are both self-evident and multi-faceted; they include much greater stand-off ranges for attack as well as a vastly increased ability to defeat, circumvent or even destroy enemy defenses. Hypersonic attack naturally reduces any kind of response time afforded to an enemy, possibly hitting or disabling a target before an enemy has a chance to respond.
This article by Kris Osborn originally appeared in WarriorMaven in 2020.